If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+105x-2500=0
a = 1; b = 105; c = -2500;
Δ = b2-4ac
Δ = 1052-4·1·(-2500)
Δ = 21025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{21025}=145$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(105)-145}{2*1}=\frac{-250}{2} =-125 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(105)+145}{2*1}=\frac{40}{2} =20 $
| 0.4x^2+105x-2500=0 | | a^2=4.84 | | -48-63(x)=140/(x^2) | | 2{4x-3}=18 | | 0=140+63x+48x^2 | | f(-3)=2^(-3+1)+4 | | 8x=18+3x | | 2^x2+6x=32^x | | 2000=5x-3x | | a^2=2.25 | | 6/7(7/6)x=5(6/7) | | 3k+0.25=7.5 | | (x+6)^2=9 | | -2=5(0.8p-6) | | 6x+15=6x+156x+15=6x+15 | | 6x=7x+65 | | 8^x-4=16^2-x | | 10x+3=20x= | | Y-4=6(x-2) | | x2–x–7=0 | | 9+5x=10x-2 | | 20x=110+30 | | 4+12-11x=36+22x | | 2y-y-3=9 | | 14d+5=7d+26 | | 9(x-2)=25.2 | | 8(a+3)=39.2 | | 52x+3=125 | | 1.1=3c-7 | | (-10)+2v=8v+2 | | 4(0.5n-0.5)=6+n | | 8p=40.8 |